

# Statistical Weights and Methods for Analyzing HINTS Data

HINTS Data Users Conference January 21, 2005

William W. Davis, Ph.D. Richard P. Moser, Ph.D. *National Cancer Institute* 





& Population Sciences

### HINTS Survey Carried Out by Westat

- List of telephone exchanges purchased
- Exchanges and numbers sampled using random digit dialing (RDD)
  - Screens out unwanted exchanges (e.g., business exchanges)
  - >> Exchanges with high minority representation were over-sampled (HINTS stratification)
- ▶ For more information see L. Rizzo's document on our website
  - "NCI HINTS Sample Design and Weighting Plan"





#### **HINTS Statistical Weight**

- Statistical weight:
  - Sampled person represents this many in the population
- ► HINTS Statistical weights derived from
  - >> Selection probabilities,
  - >> Number of telephones in the household
  - >> Response rates
  - >> Post-stratification adjustment







### **HINTS:** Race Ethnicity

| Race Eth | N    | %      | Wgt N       | Wgt %  | Diff % |
|----------|------|--------|-------------|--------|--------|
| Hispanic | 764  | 12.0%  | 23,340,239  | 11.1%  | 0.9%   |
| White    | 4276 | 67.1%  | 143,031,482 | 68.3%  | -1.1%  |
| Afr Amer | 716  | 11.2%  | 20,905,523  | 10.0%  | 1.3%   |
| Others   | 312  | 4.9%   | 12,028,337  | 5.7%   | -0.8%  |
| Missing  | 301  | 4.7%   | 10,148,812  | 4.8%   | -0.1%  |
| Total    | 6369 | 100.0% | 209,454,391 | 100.0% |        |

Reflects the planned oversampling of minority exchanges.





# Minorities Were Oversampled: Boxplot of Statistical Weights







### Older Folks Participated at a Higher Rate







# Females Participated at a Higher Rate

















& Population Sciences

## HINTS: Weighted vs. Unweighted Analyses

Unweighted HINTS analyses would have

- >> Too many African Americans and Hispanics
- Too many 45+ and too few 18-34 year olds
- >> Too many females and too few males
- >> Too many people with high education





#### Variance/Bias Tradeoff for Mean

| Estimate   | Mean               | Confidence Interval                             |
|------------|--------------------|-------------------------------------------------|
| Unweighted | $\overline{y}_{u}$ | $\overline{y}_u \pm 1.96\sigma(\overline{y}_u)$ |
| Weighted   | $\overline{y}_{w}$ | $\overline{y}_w \pm 1.96\sigma(\overline{y}_w)$ |

- The unweighted mean is biased
- The weighted mean has a larger variance

$$\sigma(\overline{y}_w) = \sigma(\overline{y}_u)\sqrt{1 + CV^2}$$





#### **HINTS Design Effect**

$$\sigma\left(\overline{y}_{w}\right) = \sigma\left(\overline{y}_{u}\right)\sqrt{1 + CV^{2}}$$

- CV is the coefficient of variation of the stat. weights
- ▶ 1+CV² is called the design effect
- ▶ Cls are 17-31% larger due to the weights
- Small price to pay for correct centering

| Restriction              | CV   | (1+CV <sup>2</sup> ) <sup>1/2</sup> |
|--------------------------|------|-------------------------------------|
| African American females | 0.84 | 1.31                                |
| Hispanic males           | 0.61 | 1.17                                |







#### Replicate weights

- What are replicate weights?
  - HINTS 50 replicate weights (fwgt1-fwgt50) were obtained by deleting 1/50th of the subjects in the full sample (and re-weighting)
- Why do we need replicate weights?
  - ▶ Used to estimate the variance of estimates obtained from the full sample -- for example a mean or a regression coefficient
- ▶ For more information see the SUDAAN manual or
  - ➤ Korn, E.L. and Graubard, B.I. (1999). Analysis of Health Surveys. John Wiley, p. 29.







### **Examples of HINTS Weights**

| Sub | fwgt    | fwgt1   | fwgt2   |
|-----|---------|---------|---------|
| 1   | 14,367  | 14,693  | 14,837  |
| 2   | 109,694 | 111,069 | 111,021 |
| 3   | 14,767  | 0       | 14,859  |
| 4   | 18,467  | 19,301  | 0       |

Full sample (fwgt) and 2 replicate weights for 4 sampled people First two subjects are in both replicates while other two are not The sum of each column of weights is the same – 209,454,391





# Jackknife Estimate of Variance

| Full sample estimate           | $\hat{	heta}$                                                                         |
|--------------------------------|---------------------------------------------------------------------------------------|
| Replicate estimate             | $\hat{	heta}_{i}$                                                                     |
| Jackknife estimate of variance | $Var(\hat{\theta}) = \frac{49}{50} \sum_{i=1}^{50} (\hat{\theta}_i - \hat{\theta})^2$ |





#### **HINTS Example**

- I'm going to read you a list of organizations. Before being contacted for this study, had you ever heard of:
  - a. The National Institutes of Health?
- Estimate population proportion (and give 95% confidence intervals (CIs))
  - by race-ethnicity/gender





#### Heard of NIH? - 95% CIs





#### **SAS** and **SUDAAN** Procedures

| Analysis type       | SAS                              | SUDAAN                       |  |
|---------------------|----------------------------------|------------------------------|--|
|                     | Not designed for survey analysis | Designed for survey analysis |  |
| Mean                | MEANS                            | DESCRIPT                     |  |
| Crosstab            | FREQ                             | CROSSTAB                     |  |
| Multiple regression | REG or GLM                       | REGRESS                      |  |
| Logistic regression | LOGISTIC                         | RLOGIST                      |  |





### Comparing Results with Logistic Regression: SAS vs. SUDAAN

& Population Sciences

- SAS Proc Logistic (unweighted; weighted)
- SUDAAN Proc Rlogist (weighted)
  - Proc Logistic (Standalone)
- ▶ Model: Internet= Age Education Race
  - **Where:** 
    - Outcome= Ever accessed internet (Yes=1)
    - Age (continuous)
    - Education (4 levels; ref= LT High School)
    - Race (5 levels; ref= Hispanic)







#### **SUDAAN Syntax**

```
proc rlogist data=test design=jackknife;
weight fwgt;
jackwgts fwgt1-fwgt50/adjjack=.98;
class educ newrace;
reflev educ=1 newrace=1;
model internet= spage educ newrace;
run;
```

Note: Design, Weight, Jackwgts, and Adjjack statements are used regardless of procedure in SUDAAN





#### **Results: Education**

| Value Some College vs. LT High School (ref) | SAS Proc<br>Logistic<br>Unweighted | SAS Proc<br>Logistic<br>Weighted | SUDAAN Proc<br>Rlogist |
|---------------------------------------------|------------------------------------|----------------------------------|------------------------|
| Log Odds                                    | 2.23                               | 2.04                             | 2.04                   |
| (Odds)                                      | (9.30)                             | (7.71)                           | (7.71)                 |
| Standard Error                              |                                    |                                  |                        |
| (β)                                         | 0.11                               | 0.10                             | 0.15                   |
|                                             |                                    |                                  |                        |
| 95% CI (β)                                  | (2.01, 2.45)                       | (1.85, 2.23)                     | (1.74, 2.34)           |

Note: Larger standard error and corresponding CI with SUDAAN





#### Results: Race

| Value<br>White vs.<br>Hispanic (ref) | SAS Proc<br>Logistic<br>Unweighted | SAS Proc<br>Logistic<br>Weighted | SUDAAN<br>Proc Rlogist |
|--------------------------------------|------------------------------------|----------------------------------|------------------------|
| Log Odds                             | 0.62                               | 1.04                             | 1.04                   |
| (Odds)                               | (1.86)                             | (2.84)                           | (2.84)                 |
| Standard<br>Error                    | 0.09                               | 0.10                             | 0.15                   |
| 95% CI                               | (0.43, 0.81)                       | (0.85, 1.24)                     | (0.74, 1.35)           |





#### **Summary**

- ▶ HINTS unweighted estimates are biased
- ▶ HINTS weights vary by race/ethnicity, gender, age and education
- ► HINTS replicate weights can be used to obtain valid confidence intervals
- We compare weighted and unweighted analyses using means and logistic regression

